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This chapter introduces chaos theory and the concept of non-linearity. It highlights the 

importance of reiteration and the system features that arise from it.  Although the 

relationship between chaos and complexity remains contested, chaos theory offers a useful 

starting point to understand complex systems.  

 

Key points  

 

• Chaos theory is the quantitative study of dynamic non-linear system. 

• Non-linear systems change with time and can demonstrate complex relationships 

between inputs and outputs due to reiterative feedback loops within the system.  

• Providing sufficient computational power is available, these systems are predictable but 

their behaviour is exquisitely sensitive to their starting point  

• Due to the complex nature of social systems, the mathematical application of chaos 

theory is limited to all but the simplest of systems. 

• The relationship between chaos and complexity is contested.  A useful starting point from 

an organisational perspective is to see complexity theory as the qualitative study of non-

linear systems drawing its metaphors from chaos theory. 

• Health systems are non-linear.  This has profound implications for analysis, prediction 

and control. 

 

Introduction 

The relationship between chaos and complexity theories is contested which is not a useful 

start.  The range of opinion includes: chaos is a sub-discipline of complexity; chaos and 

complexity are interchangeable and the distinction is arbitrary; the two phenomenon have 

different origins and should not be considered together;  the "zone of complexity" sits at 

"edge of chaos";  the study of chaos is unhelpful and should be ignored.   From an 

organisational perspective, I find the following model a useful starting point and one that 

makes sense to me: 

Chaos and complexity theory studies dynamic non-linear systems i.e. systems that change 

with time and demonstrate complex relationships between inputs and outputs due to 

reiterative feedback loops within the system.   The quantitative study of these systems is 



chaos theory. Complexity theory is the qualitative aspect drawing upon insights and  

metaphors that are derived from chaos theory. 

This book adopts that approach and this chapter explores the insights that chaos theory 

offers on the behaviour of non-linear systems. 

 

What is non-linearity? 

A non-linear system is one in which there is no simple relationship between cause and effect1.  

The main characteristics of non-linearity are: 

• Small inputs can have large system effects 

• Large inputs can lead to small system changes 

• There is extreme sensitivity of behaviour to initial conditions.  Small changes in a variable 

in the system at one point will make a very large difference in the behaviour of a system 

at some future point.   When error is introduced into a linear system the prediction error 

stays relatively constant over time. For non-linear systems prediction error increases 

rapidly with time. Due to our inability to measure initial system conditions accurately and 

the extreme sensitivity of non-linear systems behaviour to these initial conditions, in 

practical terms, most natural non-linear systems are unpredictable. 

 

What is chaos? 

Unfortunately, the term chaos is a misnomer and confusion arises from the outset over the 

common and mathematical interpretations of the term2.  Chaotic behaviour appears random 

but when studied in a particular way, ordered features and patterns are discernible.  Chaos 

can be understood by comparing it with two other types of behaviours – randomness and 

periodicity.  These are shown in Figure 1.  

 
                                                 
1 A variable changing in time in a linear manner allows simple prediction by adding a weighed sum of previous observations.  A 

non-linear time series violates this simple assumption by including squares, cubes, etc of previous terms or some more complex 

transformation such as the exponential.  Prediction is still possible but needs much greater computational power.  In more formal 

terms: 

Let 1x  and 1y  be respectively the input and output of a linear systemλ . Let 2x  and 2y  be another pair of input and output of 

the same system λ . The output y corresponding to the combined linear sum of both inputs is proportional to the linear sum of 

the outputs corresponding to each of the inputs separately. In other words, if )( 11 xy λ=  and )( 22 xy λ= , then 

2121 )( yyxxy βαβα +=+= λ  where α  and β  are constants. In the case of non-linear systems, this  does not 

hold.  

 
2  In the technical sense, the term chaos is used to denote a form of time evolution in dynamic systems 

in which the difference between two states that are initially very close grows exponentially with time.  

The Lyapunov exponent is a measure of this divergence and can be used to quantify chaotic systems. 
 



 

Chaos can be understood by comparing it with two other types of behaviour –  randomness 

and periodicity.   

Random behaviour never repeats itself although we can predict the average behaviour of a 

system using statistics.   

Periodic behaviour is highly predictable because it always repeats itself, for example, the 

swinging of a pendulum.  Such systems are deterministic, ie if we know the conditions at any 

one point we can predict those conditions at any other point in time. 

Chaos has characteristics of both behaviours.  Although it looks disorganised like random 

behaviour, it is deterministic like periodic behaviour.  However, the smallest difference in any 

system variable can make a very large difference to the future state of the system 

 

 

Figure 1 - what is chaos? 

 

Chaotic systems are characterised by three key properties: predictability, extreme sensitivity 

to initial conditions and presence of an attractor or pattern of behaviour. Chaotic patterns 

form the signature of non-linear behaviour that arises from recursive feedback among a 

system's components i.e. the output of one stage feeds back into the input of the next. (This 

recursive or re-iterative feature is critical to complex systems as it sets the focus of attention 

at a local level.) There are a number of approaches both graphical and numerical beyond the 

scope of this text to decide whether a system is chaotic or not.  It is important to note that 

non-linear systems are not necessarily chaotic but non-linearity is prerequisite to chaos.  

Although chaotic behaviour was suspected over a hundred years ago, it has only been the 

availability of computational power that has enabled scientists to probe the complex 

mathematical interior of non-linear equations.  Over the last decade, the suspicion that chaos 

may play an important role in the functioning of living systems has been confirmed1 2.   It 

seems that chaos is the healthy signature of physiology and during abnormal conditions such 

as a heart attack, systems revert to non-chaotic behaviour.  The publication of James Gleick, 

"Chaos: making a new science"3 alerted a wider audience to the importance of an area that 

has now found applications as widespread as the study of the weather to the behaviour of 

stock markets.  

In the next section, the concept of non-linearity and the road to chaotic behaviour is explored 

in more detail. 

 

 

 

 



Non linearity and the road to Chaos 

We first explore a basic non-linear equation.  To do so we use a model of the population of 

fish in a pool year on year.  Where n is the number of fish in the pool in a given year and B is 

the birth rate, equation 1 shows a linear model to describe and predict events.  (Although this 

equation describes an exponential curve, it is linear.  Linear does not mean a straight line!) 

 

Equation 1:       

                    n (next year) = B.n (this year).     

 

 

However, a more realistic model is in shown by equation 2, where  nmax  is the maximum 

number of fish that the pond can accommodate.  As the fish numbers increase, the food 

supply reduces and the term   (nmax - n(this year)) is introduced as a reiterative feedback term.           

 

Equation 2:     

n(next year) = B.n(this year). (nmax - n(this year))            

                          

 

This introduces a non-linear term into the equation.  (This simple feedback equation could be 

a the starting point to explain behaviour in health systems.  For example, I refer patients to 

the physiotherapy department but as the waiting list lengthens my referral rate is reduced.  

As patients are seen quicker, I refer more patients.)  

We explore what happens year on year as we vary the birth B. To keep the sums simple, we 

take the maximum value of n as 1 and all values of n as proportions of 1.   

Figure 2 shows a record of the fish number that will be found in the pond for a given value of 

B. 

 

INSERT FIG 2 HERE - SEE DOC END 

 

 

For values of B under 3, the fish population converges or is attracted to a constant population 

(this is called a point attractor).  However, when B reaches a value of 3 this attractor 

becomes unstable and splits or bifurcates into two - the population oscillates year on year 

around two stable values (a periodic attractor).  (Bifurcation is the point in which there is an 

abrupt change in behaviour of a dynamic system that occurs when one of the parameters 

reaches a critical value.)  As we increase the birth rate, these points split again until at a level 

of B of 3.57, plotting the fish in the pond year on year generates a huge number of values. 

We have arrived at chaotic behaviour.  Although this pattern looks random, for each birth 



rate we look at, the values of population that we can get will generate a geometric pattern 

around what is known as a chaotic or strange attractor.  We will explore this in a little more 

detail shortly.  The pattern is also boundable.  We can describe a "possibility space" in which 

the solutions to the equation can be found. 

Another interesting feature of this patterning is self-similarity at different levels of scale.  If 

we examine a very small portion of the graph and amplify it we will see the pattern repeating 

itself at smaller and smaller levels of scale.  This is known as a fractal phenomena3. 

From our exploration, we can draw some important conclusions about non-linear behaviour: 

• Complex behaviour can arise from the re-iterative application of very simple 

equations or rules. 

• Non-linear systems are predictable, providing we have adequate computational 

power to undertake the re-iterative calculations and accurate starting conditions. 

• Non-linear systems are exquisitely sensitive to where they start from (their initial 

conditions).  For example, changing the value of B only very slightly can dramatically 

alter the output of the system.  In practice, it is this feature that makes non-linear 

systems so unpredictable - we can never measure their initial conditions with 

absolute certainty. 

 

If organisations demonstrate non-linear characteristics we can make some interesting 

postulations: 

 

• Our ability to predict events and engineer the system towards a defined objective 

may be limited.  Any predictability will be short-term due to the rapidly cumulative 

effects of feedback.   

• Initial conditions are important. What happens in organisations will be influenced by 

what has gone before - you have to know where you have been to see where you 

might go. 

• We can expect to see patterns re-occurring at different levels of system scale. 

• The recursive application of a few simple rules may lead to complex organisational 

behaviour. 

• Non-linear interaction between individuals will modulate their differences and create 

novelty that may not have been anticipated. 

In the next section we explore two further concepts of chaos theory - phase space and 

attractors. 

 

                                                 
3 The fractal dimension is defined as the slope of the function relating the numbers of points contained in 

a given “magnification” to the magnification itself.   
 



Phase space and attractors 

One way of describing a dynamic system is by plotting its trajectory with time.  If we describe 

an element in the system using n variables and for each variable allocate one dimension on a 

graph, we can plot the trajectory of that element in an n dimensional graph or phase space.  

This is the space that contains the range of values that can be found in a particular system. 

Figure 3 shows a simple model to describe the motion of a particle in a fluid across which 

there is a temperature gradient.  It consists of three inter-related equations that form a non-

linear system.  The output can be drawn in 3-dimensional phase space as shown in Figure 4.  

We can see it forms a trajectory around a particular area of phase space - a chaotic attractor.  

The attractor is an area in phase space where the trajectories are more likely to be found.  

Although in theory we can calculate the exact position of the particle at any point in time, its 

trajectory will be extremely sensitive to its initial starting position.  However, we can be more 

certain about the pattern that will be described. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

dx/dt = P(y-x) 

dy/dt = R x-y-xy 

dz/dt - xy - By 

Where P, R and B are constants 

 

Fig 3 Non-linear equations to describe motion of a particle in a fluid across which 

there is a temperature difference  
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We can use these concepts as metaphors when describing non-linear systems qualitatively.  

For example, in organisations we follow trajectories in phase space around attractors or 

system fundamentals.  In the NHS one important attractor could be equity. In the US health 

system, profit would play a more important role.   

 

Conclusion 

Chaos theory studies non-linear systems mathematically. Although there have been advances 

in the prediction and control of the trajectories of chaotic systems,4 5 these have been from a 

theoretical mathematical perspective and it is unlikely that these developments could be 

extrapolated to human systems.  However, chaos can provide useful insights and metaphors 

for understanding social organisations that challenge much of current thinking.    

From our own observations, we might deduce that the health system is non-linear.  But more 

formal evidence is forthcoming. For example, Papadopoulos6 analysed surgical waiting lists in 

the NHS and confirmed chaotic properties. It was also suggested that waiting lists also 
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demonstrate fractal properties i.e. similar chaotic structure could be identified not only on 

waiting lists by speciality but on the waiting lists of individual consultants.  The conclusion 

was that government measures to reduce waiting lists were destined to failure!  

However, in most areas of organisational life mathematical analysis becomes restricted - the 

algorithms or equations that describe our interaction (our mental models that determine how 

we respond to the environment) are continually changing as we interact and learn.  Never the 

less, we can gain some useful insights applying chaos principles to social organisations within 

the framework known as complexity theory.  It is to this we turn in the next chapter. 

 

 

 

 

 

 

 

 

 

 

 



 

Figure 2 - numbers of fish found in pool 'n' in successive years with different values of birth 

rate B 

 

 

 

 

 

 

 



 

 

Figure 4. The path of a particle around an attractor in three dimensional phase space 

calculated from the non-linear model shown in figure 2 
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